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Existing efficient directed particle locating (host determination) algorithms rely on the face
belonging to cell relationship (F2C) to find the next cell on the search path and the cell in
which the target is located. Recently, finite volume methods have been devised which do
not need F2C. Therefore, existing search algorithms are not directly applicable (unless
F2C is included). F2C is a major memory burden in grid description. If the memory benefit
from these finite volume methods are desirable new search algorithms should be devised.
In this work two new algorithms (line of sight and closest cell) are proposed which do not
need F2C. They are based on the structure of the sparse coefficient matrix involved (stored
for example in the compressed row storage, CRS, format) to determine the next cell. Since
F2C is not available, testing a cell for the presence of the target is not possible. Therefore,
the proposed methods may wrongly mark a nearby cell as the host in some rare cases. The
issue of importance of finding the correct host cell (not wrongly hitting its neighbor) is
addressed. Quantitative measures are introduced to assess the efficiency of the methods
and comparison is made for typical grid types used in computational fluid dynamics. In
comparison, the closest cell method, having a lower computational cost than the family
of line of sight and the existing efficient maximum dot product methods, gives a very good
performance with tolerable and harmless wrong hits. If more accuracy is needed, the
method of approximate line of sight then closest cell (LS-A-CC) is recommended.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Particle localization or host cell determination is a problem defined on a grid as: given a set of coordinates for a point (tar-
get), determine the grid cell containing it (host cell). The problem information may be accompanied by a guess for the potential
host cell (potential cell). This problem should be solved in many cases of practical interest in computational fluid dynamics,
including Lagrangian particle tracking procedures, over-set grid simulations, particle in cell methods, immersed boundary
applications, thermal or material source inclusion procedures and free surface flow modeling.

To solve this problem, algorithms usually follow this procedure

1. Provide a cell as the potential cell.
2. Perform some kind of in-cell test on the potential cell and determine if the potential cell is the host cell.
3. If not, propose a new potential cell and follow the procedure from step 2 until the host cell is found.
. All rights reserved.

ni), mssaidi@sharif.edu (M.S. Saidi).

http://dx.doi.org/10.1016/j.jcp.2009.06.031
mailto:msani@mech.sharif.edu
mailto:mssaidi@sharif.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


7358 M. Sani, M.S. Saidi / Journal of Computational Physics 228 (2009) 7357–7367
Usually the algorithm receives a guess to start with or it begins from the cell number one or a random cell number to
initialize the procedure (step 1).

As an example, the most primitive and well known algorithm called brute-force begins from the first cell of the grid, per-
forms the in-cell test on it and if it is not the host cell, it assumes the cell whose number follows the current cell in the grid
description as the next potential cell. As the name shows it performs the in-cell test cell by cell blindly, which of course, is
the reason for its poor efficiency. Although inefficient, it always finds the correct cell. The amount of the computations be-
comes prohibitively large for large number of cells and large number of target locations. Therefore, this method is not usually
the first choice but is used some times as the fall-back algorithm.

Because of the inefficiency associated with the primitive brute-force algorithm new algorithms emerged (which we call
them directed search algorithms). They all try to find the next potential cell based on the target position and current cell
topology. It should be noted that a modified version of the brute-force algorithm was introduced by Apte et al. [1] which
should not be considered as a directed search method. In their method, instead of performing the in-cell test for all of the
cells, the distance of the centroid of all domain cells to the target is computed and the closest cell is identified. Then that
cell and its neighbors are considered for the in-cell test. If all of these cells fail in the in-cell test, the algorithm reverts back
to the original brute-force algorithm.

Lohner and Ambrosiano [2] presented a method based on the linear shape functions (in FEM) which later Lohner and
Ambrosiano [3] called it the known vicinity algorithm. Zhou and Leschziner [4] proposed a method called particle-to-the-left
for convex cells. In their method a face based cross product technique was used to investigate if the particle is outside the cell
with regards to each face. If any face fails in the test (which means the particle is not in the cell), the cell sharing the face is
assumed to be the next potential cell and algorithm is repeated. The directed search method of Chen and Pereira [5] follows
the same particle-to-the-left test for the faces of the potential cell but does not decide about the next potential cell upon
hitting a face failing the test. Instead it composes a list of test-failed faces and searches for the exit face (the face which inter-
sects the particle path). Then it marks the corresponding cell as the next potential cell. Chorda et al. [6] has compared both
methods and modified the cost intensive intersection determination procedure in the directed search method by a trajec-
tory-to-the-left test which is similar to the particle-to-the-left test. In the method introduced by Li and Modest [7] for tri-
angular grids, the next potential cell was determined using the length of the line drawn from the old particle location normal
to the face and comparing it with the projected length of the particle path on the line normal to the face. Kuang et al. [8]
proposed a different methodology based on the sum of the partial volumes. Martin et al. [9] proposed a method based on
the dot product of the face normal vector and face center to particle position vector to perform the in-cell test and to decide
about the next potential cell. Two options were introduced. In the first one, FPDP, the first face of the cell who gives a positive
dot product is used and the cell attached to it is introduced as the next potential cell. In the second one, MPDP, the face who
has the maximum dot product is used to determine the next potential cell. Haselbacher et al. [10] proposed another method
based on the trajectory intersection method using the parametric representation of the faces. In this work, the MPDP method
of Martin et al. [9], which is low cost and effective, is used for comparison.

All of the aforementioned methods need the face belonging to cell relationship (F2C) to decide about the next potential cell
(usually the neighbor cell sharing a certain face with the current potential cell) and to perform the in-cell test. For example,
the MPDM method needs to know the faces of the current potential cell, so F2C, to construct the vector from the face center
to the target. The other vector used in MPDM is the face normal vector which knowing the current potential cell needs F2C
data to be determined. This F2C data is expensive to store because it is a list which dimension matches the number of cells in
the grid and each element in the list, corresponding to a cell, is a list by itself containing the indexes of the faces of the cell. If
the flow solver is not dependent on F2C, the memory cost for grid data storage could be reduced substantially. Removing F2C,
on the other hands, makes the application of current search algorithms impossible, as described above for MPDM. However,
because the neighbor cells could be identified from the structure of the sparse coefficient matrix, new directed search meth-
ods could be designed which work without having F2C available.

To summarize, if the memory benefit of independence on F2C of the flow solver is sought and if a search algorithm (par-
ticle locating algorithm) is also needed for some purpose like particle tracking, new search algorithms are needed not be-
cause the existing ones are inefficient but because they could not work without F2C. In this work, new particle locating
algorithms are developed which are not dependent on F2C. Moreover, some of them are more efficient than the current state
of the art methods (a claim to be proved later in this work).

In what follows the directed search algorithms of line of sight and closest cell and their variations and combinations are
illustrated. Then their performance in terms of number of cells visited before locating the target, the number and quality of
wrong hits and the amount of computational time required are evaluated quantitatively on a variety of typical grids in a
square cavity. The importance of accurately locating the host cell is also discussed.
2. Sparse matrix structure, its storage and neighbor finding

Transport equations for flow phenomena are usually numerically approximated by means of finite volume, finite differ-
ence or finite element methods. They usually have computational stencils extended only a few (usually just one) computa-
tional cells (or nodes) from the cell under consideration. This means that the row in the coefficient matrix related to each
computational cell has just a few none-zero elements. For example, using cell-centered second order finite volume
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discretization on a tetrahedral grid having Ncells cells results to a coefficient matrix which has just five none-zero elements in
each row while the same row has Ncells elements (other elements are zero). Number of none-zeros for each row equals to the
number of faces the corresponding cell has plus one. To exploit this feature, the coefficient matrix is usually stored in a com-
pressed form. The matrix computations are also carried out having this zero pattern in mind. Because the none-zero ele-
ments are resulted from the linkage between cells (via their faces), this same structure could be exploited to find the
neighbors of a cell. In this work compressed row storage (CRS) and cell-centered polyhedral grid finite volume method
are used as the basis but the principles apply equally well to other compressed storage formats and discretization schemes.

For the finite volume method applied on polyhedral grids, the none-zero elements in each row (corresponding to a cell)
are the effects of neighboring cells sharing a face with it or the cell itself. Therefore the number of none-zeros in each row
equals to the number of neighbors of the cells plus one. In CRS the coefficient matrix is stored with three vectors. The first, a,
contains only the none-zero elements of the coefficient matrix, so its length equals to twice the number of faces plus the
number of cells 2Nfaces þ Ncells. This is because the none-zero elements correspond to the linkage between different cells
(off-diagonal elements) and the effect of each cell in its own equation (diagonal element). The total number of links is equal
to the number of faces and each link appears twice. The self contribution terms are evidently equal to the number of cells.
The second vector, colind, with the same length as a contains the column index for the corresponding none-zero elements in a.
The third, rowptr , is a pointer to the beginning element of each row in a which then should have a length equal to Ncells but is
extended for computational ease with a single element so that the last element contains the total number of none-zeros.

For a given grid this CRS structure remains the same over the simulation unless the grid topology is changed (which could
be accounted for very easily). Therefore, it is constructed once and stored to be available for later use. With the above dis-
cussion, this structure which was aimed to be used for matrix storage and computations has the potential to be used to iden-
tify the neighbors of the cells. For a given cell number p0, the corresponding data chunk in colind is addressed directly in rowptr

as the indices beginning from rowptr½p0� and extending to rowptr ½p0 þ 1� � 1. The corresponding elements in colind are the cell
numbers for the neighbors of p0 or p0 itself. To remove the need for checking against retrieving the cell number itself (instead
of its neighbors needed in this work), when constructing CRS storage vectors, the diagonal element was stored at the begin-
ning of the data chunk (CRS routines for matrix computations do not care about the indices in colind being in ascending order).
To sum up, the cell numbers of the neighbors of a given cell p0 are listed in colind from colind½rowptr ½p0� þ 1� to
colind½rowptr½p0 þ 1� � 1�.

Now that the neighbors of the potential cell are available with almost no cost, they should be examined to see which one
is more eligible as the next potential cell. This issue is addressed next.

3. Line of sight method (LS) and its variations

This method is based on choosing the next potential cell as the cell whose center is nearest to the line of sight of the target
for an observer standing at the center of the current potential cell. First a vector is constructed from the current potential cell
center to the target (called line of sight, LS). Then the potential cell center is connected to the center of each of its neighbors
(NLpj

for jth neighbor). An index of angular closeness ðIACÞ to LS is computed for each neighbor based on the angle between LS
and NLpj

from the inner vector product as:
Fig. 1.
termina
IACpj
¼ jð~rtarget �~rp0

Þjcosð/pj
Þ ¼
ð~rtarget �~rp0

Þ:ð~rpj
�~rp0

Þ
jð~rpj
�~rp0

Þj ð1Þ
A polyhedral grid and the sequence of cells chosen by the method of line of sight. The starting cell (guess) is shown with dashed faces and two
ting cells are shown with highlighted faces.
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where p0 is the current potential cell and pj is its jth neighbor (Fig. 1). Obviously the higher the IAC, the closer the correspond-
ing neighbor to the line of sight. The search is terminated when the next potential cell becomes the old potential cell (go and
return). Between the last two cells the cell being closer to the target is chosen as the host cell if there is no F2C available. If
F2C is available or it is allowed to be invoked temporarily, instead of checking the distance, the last cell is subjected to the in-
cell test and if it fails the other cell is chosen as the host cell.

In order to decrease the computational cost related to the square root evaluation in the denominator of Eq. (1), assuming
that the centers of the neighbors are nearly equidistant from the potential cell center, an approximate index of angular close-
ness is defined as:
IACapp
pj
¼ jð~rpj

�~rp0
ÞjIACpj

¼ ð~rtarget �~rp0
Þ:ð~rpj

�~rp0
Þ ð2Þ
This value could be used instead of IACpj
.

At the last step, when choosing between the two terminating cells, while not having F2C data, situations may happen
where the cells have very different sizes and/or aspect ratios (Figs. 2 and 3). If the target is located near the sharing face,
choosing the closest cell may result to a wrong hit. To modify the behavior of the method in this situation, two variations
of the method are proposed here. Both methods weight the distance and are suitable in different situations.

In the first variation, which is suitable for different cell volumes but not high aspect ratio grids (Fig. 2), instead of choosing
the host cell based on the center-to-target distance, the distance is divided by the cell characteristic length and this weighted
distance is used to decide about the host cell. The cell characteristic length is defined for each cell as:
‘p ¼ A1=2
p ð2DÞ

‘p ¼ V1=3
p ð3DÞ

(
ð3Þ
and the length weighted index of linear closeness, ILCLW , is defined as:
ILCLW
p ¼ ð

~rtarget �~rpÞ:ð~rtarget �~rpÞ
‘2

p

ð4Þ
The cell having the smaller ILCLW is chosen as the host cell.
Fig. 2. Choosing between the two terminating cells which have very different sizes in the method of line of sight.

Fig. 3. Choosing between the two terminating cells which have very different sizes and aspect ratios in the method of line of sight.
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In the second variation, which is suitable for high aspect ratio grids, the face normal characteristic length is used as the
weight. It is obtained by estimating the face area form:
Fig. 4.
chosen
Af ¼
Vp0
þ Vp1

2j~rp0
�~rp1

j ð5Þ
Then the face normal characteristic length of each cell is estimated as:
‘F
p ¼

Vp

Af
ð6Þ
and the face normal length weighted index of linear closeness, ILCFLW , is defined as:
ILCFLW
p ¼ ð

~rtarget �~rpÞ:ð~rtarget �~rpÞ
‘F

p
2 ð7Þ
The cell having the smaller ILCFLW is chosen as the host cell.
To make things automatic, the aspect ratio should be determined automatically. This is done by computing the aspect

ratio as:
ARp ¼
‘F

p

‘p

 !2

ð8Þ
A value near one for a quadrilateral cell shows closeness of the cell to the square shape. A large value shows the cell is
stretched in the direction normal to the face in between and vice versa.
4. Closest cell method (CC) and its variation

In this method, among the current potential cell and its neighbors, the cell which is closest to the target is chosen as the
next potential cell (Fig. 4). The index of linear closeness, ILC, for these cells is defined as:
ILCp ¼ ð~rtarget �~rpÞ:ð~rtarget �~rpÞ ð9Þ
The cell having the lowest ILC is then chosen as the next potential cell. If the index of linear closeness of the current po-
tential cell, ILCp0 , is lower than that of all of its neighbors, ILCpj

, the search is terminated and p0 is assumed to be the host cell.
Although this method does not have to decide between the two terminating cells, the same comment about the different

cell volumes and high aspect ratio cells applies during the course of next cell determination. Therefore two logical extensions
introduced for the method of line of sight could be applied here (cell characteristic length and face normal characteristic
length weighting). This means, instead of using ILC to find the next potential cell, ILCLW or ILCFLW could be used. Unfortu-
nately, using ILCFLW makes the computational cost unacceptable. This is because the number of Af values which should be
assigned to a cell equals the number of faces it possesses. This requires specific computation and evaluation of a different
‘F

p for different faces of a single cell. Therefore, this is not used in this work.
A polyhedral grid and the sequence of cells chosen by the method of closet cell. The starting cell (guess) is shown with dashed faces and the host cell
by the method with highlighted faces.
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5. Methods comparison strategy

The methods described above were implemented into a code to be tested and compared. Four meshes were generated on
the unit square (0 < x < 1 and 0 < y < 1) which had different cell topologies typical to fluid simulations (Fig. 5). A population
of 1000 particles was generated on each grid. For each case, correct host cells were identified using MPDP algorithm [9].
Table 1 lists the abbreviations used to represent the results which are detailed in Tables 2–5.

To compare the methods, some quantitative features were extracted. The first is the average number of cells visited (Avg
CV) before locating the host. The second is the number of wrong hits (WH) or unsuccessful localizations. To understand how
wrong the result is, two quantities are introduced. The average normalized distance of the target location to the correctly
identified host cell center is one of them. The normalization is based on the characteristic length of the host cell and aver-
aging is carried out based on the L2 vector norm as:
hdL2
n icorrect ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNcorrect j~rtarget �~rpj
‘p

� �2
,

Ncorrect

vuut ð10Þ
where, as is implied by Ncorrect , the summation is carried over the correct hits.
The next parameter is the average normalized distance of the target location to the correct host cell center for wrong hit

cases. Again normalization is based on the characteristic length of the correct host cell and averaging is carried out based on
the L2 vector norm as:
hdL2
n iwrong ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNwrong j~rtarget �~rcorrectj
‘correct

� �2
,

Nwrong

vuut ð11Þ
where, as is implied by Nwrong , the summation is carried over the wrong hits.
To make these measures comparative, the value of hdL2

n icorrect for MPDP method which always locates the correct host cell,
hdL2

n iMPDP , is considered as the base and the value for other methods relative to this base is presented as percentage in the
corresponding columns, hdL2

n ic% and hdL2
n iw%. The value corresponding to MPDP method shows that on average how far the

targets are distributed in the cells relative to the cell dimensions. For correct hits the higher the hdL2
n ic%, the more the method

is successful to find more distant targets. For wrong hits, hdL2
n iw% shows the average relative distance required for the method

to fail, hence, the quality of its error. Higher values of this percentage for a method show that the method is able to capture
the correct locations unless for very distant targets relative to their correct host cells.

A figure of merit ðfmÞ is defined which is aimed to measure the accuracy and the amount of computations required by each
method. The effect of accuracy could be encoded by the number of correct hits (relative to the total number targets) and the
mean distance of them (relative to that of MPDP). The computational costs could be encoded by RCT, relative computational
time (relative to MPDM). The fm becomes:
fm ¼
Ncorrect

Ntargets
� hd

L2
n icorrect

hdL2
n iMPDP

� 1
RCT

� �c

ð12Þ
where c is used to weight the effect of computational time. For MPDP, fm becomes unity and values greater than this indicate a
better method on this scale. In this work c ¼ 1 is used. The method requires less computational effort than MPDP as RCT be-
comes smaller than one, therefore RCT values less than one are more desirable. It should be noted that RCT does not include
the memory cost. Therefore, although fm could be used to evaluate the relative performance of the methods introduced herein,
it should be modified to reflect the memory costs when the methods are to be compared with other methods that use F2C.

6. Discussion

Since all of the methods introduced herein fail to identify the correct host cell to some degree, their mode of failure is
discussed first.

Uniform Cartesian grid (Fig. 5(a)): Referring to Table 2, none of the methods failed on the equidistance orthogonal grid.
They differ in the amount of computations required. CC was the best having a figure of merit (fm) of 1.2. LS-A schemes fol-
lowed it with fm ¼ 1. The high costs of the evaluation of the vector length in the denominator of Eq. (1) made the compu-
tational cost of LS schemes high, hence, reducing their fm to 0.6.

Clustered grid (Fig. 5(b)): On the clustered grid, Table 3, the family of line of sight methods failed more frequently. The
approximate version of the method failed even more drastically. Referring to the columns hdL2

n ic% and hdL2
n iw% using the

F2C or weighting the distances did not alter the situations. Therefore, the mode of failure was not related to different dimen-
sions of the terminating cells. It should be somehow related to the aspect ratio of the cells which is the major difference be-
tween the clustered grid and the uniform one. Referring to Fig. 6, the sequence of cells chosen by the method as the next
potential cell is shown. The method fails to find its path towards the correct host cell when it has reached cells numbered
5 and 6. It chooses cell number 5 between these terminating cells. The higher the aspect ratio, the more the probability of
this failure mode. Approximate versions of the family are more prone to fail in higher aspect ratio grids because they assume



Table 1
Abbreviations used in the representation of the search methods.

Abbreviation Meaning

Avg CV Average number of cells visited
WH Wrong hits

hdL2
n ic% The ratio of hdL2

n icorrect to hdL2
n iMPDP (Eq. (10))

hdL2
n iw% The ratio of hdL2

n iwrong to hdL2
n iMPDP (Eq. (11))

RCT Computational time relative to that of MPDP

BF Brute force
MPDP Maximum positive dot product method [9]
LS-F2C Line of sight with face to cell relationship used in last step
LS Line of sight without face to cell relationship
CC Closest cell
LSCC Line of sight then closest cell
CCLS Closest cell then line of sight
LS-A-CC Approximate line of sight then closest cell

LW Cell characteristic length weighted
FLW Face normal characteristic length weighted
A Approximate

Fig. 5. Meshes used for the evaluation of the methods.
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that neighbors are equidistant (Eq. 2). As a result of high aspect ratio, this assumption becomes unacceptable for example for
cells 4 and 6 neighboring cell 5. Unfortunately this mode of failure is very dangerous because the high aspect ratio cells are



Table 3
Search results on a Cartesian clustered 50 � 50 mesh (Fig. 5(b); conditions and precisions are the same as Table 2, for abbreviations refer to Table 1).

Method Avg CV WH(%) hdL2
n ic% hdL2

n iw%
RCT (%) fm

BF 1231 0 – 1975 0.05
MPDM 32 0 100 – 100 1
LS-F2C 33 6.2 95.08 156.6 165 0.5
LS 33 6.9 94.94 152.7 165 0.5
LS-LW 33 6.6 95.06 154.5 165 0.5
LS-FLW 33 6.5 95.06 154.5 165 0.5
LS-A 33 21 87.74 136.6 90 0.8
LS-A-LW 33 20.6 87.93 136.9 90 0.8
LS-A-FLW 33 20.6 87.93 136.9 90 0.8
CC 32 1.5 99.41 133.2 80 1.2
CC-LW 32 0.5 99.86 124.5 100 1
LSCC 35 1.5 99.41 133.2 159.7 0.6
CCLS 34 1.5 99.41 133.2 95 1.1
LS-A-CC 35 1.5 99.41 133.2 90 1.1

Table 4
Search results on a triangular mesh with 894 cells (Fig. 5(c); conditions and precisions are the same as Table 2, for abbreviations refer to Table 1).

Method Avg CV WH(%) hdL2
n ic% hdL2

n iw%
RCT (%) fm

BF 461 0 100 – 1320 0.08
MPDM 22 0 100 – 100 1
LS-F2C 23 0.3 99.58 194.8 165 0.6
LS 23 3.7 97.43 152.3 170 0.5
LS-LW 23 2.9 97.83 156.1 170 0.6
LS-FLW 23 2.9 97.83 156.1 175 0.5
LS-A 23 3.9 97.28 152.3 100 0.9
LS-A-LW 23 3.1 97.69 155.8 100 0.9
LS-A-FLW 23 3.1 97.69 155.8 105 0.9
CC 22 3.8 97.34 152.5 85 1.1
CC-LW 10 57.5 96.26 102.7 47 0.9
LSCC 25 3.7 97.43 152.3 170 0.6
CCLS 24 3.7 97.43 152.3 110 0.9
LS-A-CC 25 3.7 97.43 152.3 105 0.9

Table 2
Search results with different algorithms on a uniform 20� 20 mesh (Fig. 5(a)) for 1000 random target position and random potential cell guess (for
abbreviations refer to Table 1; values of Avg CV, WH(%), hdL2

n ic% and hdL2
n iw% are within �3% for different samples each having 1000 particles and initial host cell

guess pairs, RCT is within �2:5% for 1000 runs, fm is correct to one decimal place).

Method Avg CV WH(%) hdL2
n ic% hdL2

n iw%
RCT (%) fm

BF 192 0 100 – 710 0.14
MPDM 14 0 100 – 100 1
LS-F2C 15 0 100 – 170 0.6
LS 15 0 100 – 170 0.6
LS-LW 15 0 100 – 170 0.6
LS-FLW 15 0 100 – 170 0.6
LS-A 15 0 100 – 95 1.0
LS-A-LW 15 0 100 – 100 1.0
LS-A-FLW 15 0 100 – 100 1.0
CC 14 0 100 – 85 1.2
CC-LW 14 0 100 – 105 1.0
LSCC 16 0 100 – 170 0.6
CCLS 16 0 100 – 110 0.9
LS-A-CC 16 0 100 – 100 1.0
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used where the gradients are high. Therefore, choosing a wrong host cell in the direction of alignment of the gradient vector
results to a very poor interpolation accuracy. To conclude, method of line of sight is not a good choice where the aspect ratio
becomes high.

To deal with the problems discussed above, the line of sight method was followed by the closest cell method which per-
formed well on the same grid. The combination, LSCC, resulted to some more steps to be taken by the search algorithm and it
captured the correct host cells to 98.5%. In terms of fm, the efficiency was improved because of the more correct hits. The
same strategy applied to the approximate version, LS-A-CC, resulted to a very efficient scheme with a figure of merit of
1.1 which was equally obtained by CCLS.



Table 5
Search results on a mixed mesh with 3962 cells (Fig. 5(d); conditions and precisions are the same as Table 2, for abbreviations refer to Table 1).

Method Avg CV WH(%) hdL2
n ic% hdL2

n iw%
RCT (%) fm

BF 2511 0 100 – 2530 0.04
MPDM 41 0 100 – 100 1
LS-F2C 41 20.5 79.71 155.4 160 0.4
LS 41 23.3 78.44 150.5 155 0.4
LS-LW 41 21.4 79.17 14.0 155 0.4
LS-FLW 41 21.4 79.17 154.0 155 0.4
LS-A 40 42.6 75.32 125.8 85 0.5
LS-A-LW 40 41.4 75.70 126.7 85 0.5
LS-A-FLW 40 41.4 75.70 126.7 90 0.5
CC 40 4.9 98.05 132.2 80 1.2
CC-LW 24 55.9 96.29 102.8 65 0.7
LSCC 43 4.8 98.14 131.5 155 0.6
CCLS 42 4.9 98.05 132.2 90 1.0
LS-A-CC 43 4.8 98.14 131.5 90 1.0
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On the same grid, CC method performed very well because on a Cartesian grid, wherever cells have equal dimensions, the
criterion of ILC is perfect. The small amount of failure could be assigned to unequal volume adjacent cells. On these rare
cases, weighting the method, modified the probability of wrong hits with a factor of three which proves the assumption
about the mode of failure. The very good figure of merit of 1.2 for CC method was decreased to 1.0 by weighting because
of the added computational cost. To further improve fm, the weighting could be applied just at the last step, therefore, cutting
the search path evaluation costs related to weighting. The mode of failure associated with CC on high aspect ratio grids is not
as dangerous as LS, because the direction of incorrect identification of the host cell is normal to the clustering direction of the
grid and low variation of field variables are expected in this direction.

Triangular grid (Fig. 5(c)): CC method failed a bit more than LS on the triangular grid (Table 4). Weighting made situation
very worse for CC. This is because the search path was wrongly determined from the initial steps. Weighting improved the
situations for LS, because it used distances just for the terminating cells. The remaining wrong hits for LS and all of them for
CC could be related to the grid having high skewness in some places (Fig. 7). To prove this claim the LS method was used with
F2C. It found host cells in 99.7% of the cases. With F2C the mechanism for deciding between terminating cells changes from
distance based to the in-cell test. Therefore, the mode of failure for both LS and CC is related to high skewness of the host cell.
Fortunately, this is not too bad (c.f., Section 7).
Fig. 6. The failure mode of the LS family of methods.

Fig. 7. The CC failure mode and also the mode related to LS when it has to decide between terminating cells based on distance.
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Mixed grid (Fig. 5(d)): As a more realistic grid, typical to the fluid simulations, a grid with quadrilateral cells clustered nor-
mal to the boundaries and triangular cells in the central portion was constructed. Results for search on this grid are summa-
rized in Table 5. Because there were many high aspect ratio cells, the methods of LS family had a high level of wrong hits
(especially the approximate version). CC performed almost perfectly and the error remaining could be attributed to high
skewness triangular cells. The LS methods followed by CC improved the behavior of LS and made them as good as CC in cap-
turing the correct host cells. In case of LS-A-CC, it captured more host cells than CC. On the basis of figure of merit rating
(assuming c ¼ 1), CC without weighting was the best method with fm equal to 1.2 followed by LS-A-CC and CCLS with fm

equal to 1.
A note on lower computational costs. As is seen in the Tables 2–5, in most cases, CC, LS-A-CC and CCLS methods had less

computational costs than MPDP. All these methods require the same number of computations per neighbor in dot product
account. MPDP also needs to construct the vector from the face center to the target which needs vector subtraction. This task
is face dependent and therefore needs to be done once per face. In CC, LS-A-CC and CCLS methods the vector from the po-
tential cell to the target is constructed once and is used for all of the neighbors. The amount of saving dependens on the num-
ber of faces of the potential cell. For a triangular (quadrilateral) cell there are two (three) less vector subtractions. For a
polyhedral cell having Nf faces there are Nf � 1 saved vector subtractions. For methods of LS-A-CC and CC-LS, in some cases
like pure triangular grids, the benefit is out weighted by the more number of cells visited. For CC method, because the num-
ber of cell visits were always less or equal to MPDP, the cost was always less.

A note on parallel application: It is worth noting that the methods proposed herein have the same parallel features as
MPDM. In finding the path to the host cell, methods proposed herein and MPDP need to evaluate some kind of metric to find
the direction to look for the next potential cell. This could be evaluated in parallel for the neighbors (faces in MPDP) of the
potential cell. The comparison to decide about the next potential cell needs the same amount of data transfer and serial
work. Methods proposed herein and MPDP could be used in parallel equivalently for different targets (particles), because
finding the host cells of different targets is a parallel task in nature.

7. How important is hitting the correct host cell?

The answer depends on the application. For example, in Lagrangian particle tracking, the value of fluid velocity should be
interpolated to the position of the particle. Two methods are available; velocity profile reconstruction within the cell and
weighted interpolation between the nearby cell centers.

If the velocity reconstruction is used with triangular grids, extrapolating to a position outside a cell would not result to a
bad approximation for high skewness cases shown in (Fig. 7). It may be even a better approximation than the value obtained
by interpolation using velocity reconstruction inside the correct host cell whose center is far away from the target. Because
the failure mode for all of the methods introduced on triangular grid was related to the high skewness cells, it could be con-
cluded that all of them are acceptable for interpolation except the CC method with weighting. Considering the costs, the best
method is CC followed by LS-A-LW, LS-A-FLW, LS-A-CC, CCLS and LS-A.

For velocity reconstruction on a highly clustered grid where there are usually high gradients in the velocity field in the clus-
tered region, even one cell departure from the correct host cell in the gradient direction would result to unacceptable results
and extrapolation is destructive. On this account, none of the methods of the LS family could be used unless they are fol-
lowed by CC. The analysis of the mode of failure of CC shows that in rare cases of its failure, it fails in the safe direction (nor-
mal to the gradient) and extrapolation is not so destructive. Weighting at the last step should improve its wrong hit counts
because the failure is related to unequal cell volumes mode. The cost analysis shows that CC is the best, followed by LS-A-CC
and CCLS.

To sum up, for velocity reconstruction on any grid, the best choice is between CC, LS-A-CC and CCLS. The figure of merit of
CC, based on c ¼ 1 is 10–20% higher. If the correct hitting is more desired, c < 1, then LS-A-CC with length weighting may
become more acceptable.

For the second option of weighted interpolation between nearby cell centers, host cell boundaries become unimportant. In-
stead, it is important for the interpolation stencil constructed from the identified host cell center and its neighboring cell
centers to surround the particle. In this situation, CC is more reliable than the state of the art method MPDP [9] because
it always locates the cell center which is closest to the target location and therefore is more suitable to be used in weighed
interpolation. CC also needs less computational time. LS-A-CC having the same computational time as MPDP follows CC. Both
methods do not need F2C which is an added memory benefit.

It is worth reminding that even if CC was not superior on computational time and memory accounts, it and all of the
methods proposed herein do not need F2C which makes them the only available methods which could be used without
the penalty of storing F2C.

8. Conclusion

Two new search algorithms of closest cell (CC) and line of sight (LS) for particle localization (host determination) were
introduced. A number of modifications and their combinations were discussed. The major feature of the newly introduced
methods was their independence to the face belonging to cell relationship (F2C). The proposed methods were blind to the
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dimensionality of the grid and could be used in three dimensions without any modification. These methods were tested
against one of the best methods available in the literature, namely, maximum positive dot product (MPDP). The issue of
accuracy (finding the host cell correctly) and reliability (quality of wrongly identified host cells) was addressed in a compar-
ative study. As a result, CC and LS-A-CC were found to be less computational effort and memory demanding than MPDP and
more reliable for interpolation on highly skewed grids with weighed interpolation. All of the methods proposed share the
feature that they do not need F2C which makes them less memory demanding than the existing methods (the benefit which
increases with the size of the grid).

Acknowledgment

This work was carried out in Center of Excellence in Energy Conversion, Sharif University of Technology.

References

[1] S.V. Apte, K. Mahesh, P. Moin, J.C. Oefelein, Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, International Journal of
Multiphase Flow 29 (8) (2003) 1311–1331.

[2] R. Lohner, J. Ambrosiano, A vectorized particle tracer for unstructured grids, Journal of Computational Physics 91 (1990) 22–31.
[3] R. Lohner, J. Ambrosiano, Robust, vectorized search algorithms for interpolation on unstructured grids, Journal of Computational Physics 118 (1995)

380–387.
[4] L.M. Zhou, Q. Leschziner, An improved particle-locating algorithm for Eulerian–Lagrangian computations of two-phase flows in general coordinates,

International Journal of Multiphase Flow 25 (August) (1999) 813–825, doi:10.1016/S0301-9322(98)00045-7 (13).
[5] X. Chen, J.C.F. Pereira, New particle-locating method accounting for source distribution and particle-field interpolation for hybrid modeling of strongly

coupled two-phase flows in arbitrary coordinates, Numerical Heat Transfer, Part B: Fundamentals 35 (1) (1999) 41–63.
[6] R. Chorda, J.A. Blasco, N. Fueyo, An efficient particle-locating algorithm for application in arbitrary 2D and 3D grids, International Journal of Multiphase

Flow 28 (9) (2002) 1565–1580.
[7] G. Li, M. Modest, An effective particle tracing scheme for structured/unstructured grids in hybrid finite volume/PDF Monte Carlo methods, Journal of

Computational Physics 173 (2001) 187–207.
[8] S.B. Kuang, A.B. Yu, Z.S. Zou, A new point-locating algorithm under three-dimensional hybrid meshes, International Journal of Multiphase Flow 34 (11)

(2008) 1023–1030.
[9] G.D. Martin, E. Loth, D. Lankford, Particle host cell determination in unstructured grids, Computers and Fluids 38 (1) (2009) 101–110.

[10] A. Haselbacher, F.M. Najjar, J.P. Ferry, An efficient and robust particle-localization algorithm for unstructured grids, Journal of Computational Physics
225 (2) (2007) 2198–2213.

http://dx.doi.org/10.1016/S0301-9322(98)00045-7

	A set of particle locating algorithms not requiring face belonging to cell connectivity data
	Introduction
	Sparse matrix structure, its storage and neighbor finding
	Line of sight method (LS) and its variations
	Closest cell method (CC) and its variation
	Methods comparison strategy
	Discussion
	How important is hitting the correct host cell?
	Conclusion
	Acknowledgment
	References


